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DBS use 1993-2017 (USA)
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Indications and distribution of DBS

e Parkinson’s Disease
;._;'

e Essential Tremor
* Dystonia
* Epilepsy*

* Obsessive Compulsive
Disorder*

(Jan 2020)

R *: in some countries
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Thalamus

Globus pallidus pars interna

Q Fasano, 2018
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% of FND among DBS referrals at TWH
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FND after MRgFUS thalamotomy

Before MRgFUS thalamotomy 3 months after MRgFUS
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Multichannel surface EMG and

accelerometer in a tremor DBS candidate
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Multichannel surface EMG and

accelerometer in a tremor DBS candidate
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Multichannel surface EMG and
accelerometer in a tremor DBS candidate

Left extensor carpi radialis 200 ms
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Left flexor carpi ulnaris
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Significant reduction in amplitude (right of the dotted line) compared with the baseline (left of
the dotted line) during cognitive task of serial 7 subtraction
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Quantitative Separation of Tremor and
Ataxia in Essential Tremor

Agostina Casamento-Moran, PhD," Basma Yacoubi, PhD,' Bradley J. Wilkes, PhD,’
Christopher W. Hess, MD,? Kelly D. Foote, MD,?> Michael S. Okun, MD,?
Aparna Wagle Shukla, MD,? David E. Vaillancourt, PhD,'? and Evangelos A. Christou, PhD ()

Objective: This study addresses an important problem in neurology, distinguishing tremor and ataxia using quantita-
tive methods. Specifically, we aimed to quantitatively separate dysmetria, a cardinal sign of ataxia, from tremor in
essential tremor (ET).
Methods: In Experiment 1, we compared 19 partidpants diagnosed with ET undergoing thalamic deep brain stimulation
(DBS; ETpgs) to 19 healthy controls (HC). We quantified tremor during postural tasks using accelerometry and dysmetria
with fast, reverse-at-target goal-directed movements. To ensure that endpoint accuracy was unaffected by tremor, we
quantified dysmetria in selected trials manifesting a smooth trajectory to the endpoint. Finally, we manipulated tremor
amplitude by switching DBS ON and OFF to examine its effect on dysmetria. In Experiment 2, we compared 10 ET partic-
ipants with 10 HC to determine whether we could identify and distinguish dysmetria from tremor in non-DBS ET.
Results: Three findings suggest that we can quantify dysmetria independently of tremor in ET. First, ETpgs and ET
exhibited greater dysmetria than HC and dysmetria did not correlate with tremor (R? < 0.01). Second, even for trials
with tremor-free trajectories to the target, ET exhibited greater dysmetria than HC (p < 0.01). Third, activating DBS
reduced tremor (p < 0.01) but had no effect on dysmetria (p > 0.2).
Interpretation: We demonstrate that dysmetria can be quantified independently of tremor using fast, reverse-at-target
goal-directed movements. These results have important implications for the understanding of ET and other cerebellar
and tremor disorders. Future research should examine the neurophysiological mechanisms underlying each symptom
and characterize their independent contribution to disability.

ANN NEUROL 2020;88:375-387
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Dystonia as complication of
thalamic neurosurgery

ET — before Vim DBS (ET plus?) Dystonia — after Vim DBS +Gpi DBS

Picillo et al., 2019
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Insights from temporal discrimination
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* Neurophysiology during DBS
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Targeting
— Indirect

— Direct
* |Intra-OP MRI

Anesthetic techniques

— Local (awake) followed -
by GA

— Asleep-Awake-Asleep
— Asleep

Intra-OP recording, y/n
Intra-OP testing, y/n

R Fundamentals and Clinics of DBS, 2020 ed. Temel, Leentjens, de Bie, Chabardes, Fasano
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Micro-electrode recording (MER)
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Globus pallidum
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GPi recordings in different states

A

Parkinson's disease (No Anest.)

Primary Non-DYT1 Dystonia (No Anest.)

~HHHH— AR R C

Tourette's syndrome (No Anest.)

D
e: L |

Status Dystonicus (Propofol) 5 Seconds of Data

s Shils et al., 2022
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Subthalamus
@ - W Anterior thalamic burster cell
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Asleep MER

electrode depth

Fig.1 MER showing the typical STN discharge pattern in 2 PD patients operated under general anesthesia. Implanted depth, 0 (upper
patient),+2 mm (lower patient)

& Izzo et al 2024
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Additional testing

Detection of kinesthetic cells (tactile/proprioceptive
stimuli)
— Gpi: face,arm: ventrolateral; leg: central/dorsomedial
— STN: not clear distinction

* Detection of other phenomena (e.g. OT firing increases
after flashing a light)

e MEP correlates with distance from the IC
e SEP/VEP
* (Clinical assessment)

Amplitude (mV)
o

Time

Taha et al., 1996; Vitek et al.,1998

Medicine Guridi et al., 1999; Trenado et al 2024
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Is MER safe?

The role of n of traces and center volume
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MER vs Local Field Potentials (LFPs

MER:

* Single or multi-unit recordings

*  Provides detailed information about
neuronal characteristics

* Does not provide a broad picture of
how neuronal populations are
communicating within a nucleus

-

- - -

LFP recording:

e Recordings from a much larger 1

population of neurons ' n' h . f
i f luﬂf \ﬁﬁj | ‘I\W W N |' rz || f\'f’ L \v

e Reveals the presence of neural
rhythms or synchronised 5
oscillatory activity "0 0.2 04 086 08 1.0
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Local Field Potentials

Raw signal
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STN B-LFP: what do we know

Reduces with stimulation amplitude

[Medtronic
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Clinical benefits of brain sensing have not been established.

Feldmann et al., 2021



Evoked resonant neural activity (ERNA)

Evoked potential characterized by

high-frequency (200-500 Hz), begins =
~4 ms after the DBS pulse for at least " DBS
10 ms % 3 dB
350
In STN and GPI, in PD, dystonia, MSA :
— NotinVIMin ET i = . St - e
— Signal might arise from the reciprocal =~ % «} l‘ ' J |J‘| = = R S o f
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Thalamus in n=1 functional dystonia

* Firing rates and thalamic reorganization

— functional = ’organic’ dystonia
e Signal-to-noise ratio in Vop

— ’organic’ dystonia > functional > pain patients
e Cells responding to movements in Vim

— functional > ‘organic’ dystonia

* Thalamic neuronal activity ‘may drive movement for both,
whether it is a consequence of dystonic movements or a risk
factor for the development of these movements’

3 Kobayashi et al., 2011
¥ _ Medicine
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GPi in functional dystonia versus DYT-1
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Nothing new...

Cortical and Spinal Abnormalities in
Psychogenic Dystonia

Alberto ). Espay, MD,"' Francesca Morgante, MD," Jamie Purzner, HBSc,'? Carolyn A. Gunraj, MHSc,'?
Anthony E. Lang, MD, FRCPC,"*and Robert Chen, MBBChir, MSc, FRCPC'?

Objective: The pathophysiology of psychogenic dystonia has not been examined, but a growing body of literature suggests that
abnormal sensory input from repetitive movements can lead to plastic cortical changes. Reduced cortical and spinal inhibition
is well documented in organic dystonia. We tested the hypothesis that aberrant sensory input associated with abnormal posture
may cause similar abnormalities by testing patients with psychogenic dystonia.

Methods: We assessed cortical and spinal inhibitory circuits and cortical activity associated with voluntary movement in 10
patients with clinically definite psychogenic dystonia, 8 patients with organic dystonia, and 12 age-matched healthy control
subjects.

Results: Three measures of cortical inhibition, resting short- and long-interval intracortical inhibition and cortical silent period,
were reduced in both psychogenic dystonia and organic dystonia. Cutancous silent period mediated by spinal circuitries was
increased in psychogenic and organic dystonia. Forcarm spinal reciprocal inhibition was reduced in psychogenic dystonia.
Interpretation: Psychogenic and organic dystonia share similar physiological abnormalities. Previous findings of abnormal cor-
tical and spinal excitability in organic dystonia may, in part, be a consequence rather than a cause of dystonia. Alternatively,
these findings may represent endophenotypic abnormalities that predispose to both types of dystonia.

Ann Neurol 2006;59:825-834

Psychogenic
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Stimulating parameters
 Amplitude (Volt) | Pulse width (mcsec) |Frequency (Hz)
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DBS programming approaches

Current standard of care
*  Pure clinical algorithms (e.g., monopolar review)

*  Clinical algorithms informed by hierarchical contact selection imbedded in the DBS programming
software

Based on biomarkers

 Kinematics (e.g., accelerometers)
Metabolic brain changes measured with functional MR
LFP-based programming (including supervised closed-loop DBS)
Algorithm-driven online optimization
 Closed-loop based on kinematics (e.g., tremor)
Based on neuroimaging

* Qualitative VTA-based Implementing automation in deep brain stimulation: has Ea®
* Quantitative algorithm-based the time come?

DBS=deep brain stimulation. LFP=local field potential. VTA=volume of tissue activated.

o Bonizzato & Fasano, 2023
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When and why

LFP of interest, 5Hz window (Set-up) LFP agnostic, ~0-100Hz window

™ ™

BrainSense™ Streaming BrainSense™ Survey

Purpose Visualize patient LFP signal changes in real-time A utility for identifying the existence of LFP signal on all contact pairs
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During clinic visit

Observe real-time physiologic response

Clinical value - - ; .
during stimulation parameter adjustments

LFP and system integrity check

BrainSense™ Timeline BrainSense™ Events

Display events and chronically-recorded

Purpose LFP data in calendar format

Capture patient-triggered, customizable events stored on device

(also with OmA)
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Observe what your patient actually

; . - Generate a Timeline diary of events with corresponding LFP data
experiences outside of the clinic

Clinical value

o
-
Medicine

&) UNIVERSITY OF TORONTO | Neurology



When and wh

LFP of interest, 5Hz window (Set-up) LFP agnostic, ~0-100Hz window

™ ™

BrainSense™ Survey

BrainSense™ Streaming

Purpose Visualize patient LFP signal changes in real-time A utility for identifying the existence of LFP signal on all contact pairs
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During clinic visit

Observe real-time physiologic response

X i A . LFP and system integrity check
during stimulation parameter adjustments y grity

Clinical value

BrainSense™ Timeline BrainSense™ Events

Display events and chronically-recorded

) Capture patient-triggered, customizable events stored on device
LFP data in calendar format P P 99

Purpose

(also with OmA)

(2]
5=
e

>
L
£
©

{ =

(]

(]

3
2

(]
m

Observe what your patient actually

; . - Generate a Timeline diary of events with corresponding LFP data
experiences outside of the clinic

Clinical value
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LFP and electrode’s placement

RIGHT ELECTRODE LEFT ELECTRODE

D Right STN

97010

TOM

1W0ToON

a Courtesy of Dr. A. Boogers
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Same patient, misplaced side

ispheres)
€ LeftSTN P : .

alpha

SENSE CHANNELS Gamma
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s Darcy et al. 2022
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LFPs to inform programming?

DETEC algorithm

Low-beta suppression
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rest vs action tremor

Brain sense

&

Neurology
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Activating 2 contacts

F 3
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When and wh

LFP of interest, 5Hz window (Set-up) LFP agnostic, ~0-100Hz window

™ ™

BrainSense™ Survey

BrainSense™ Streaming

Purpose Visualize patient LFP signal changes in real-time A utility for identifying the existence of LFP signal on all contact pairs
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During clinic visit

Observe real-time physiologic response

X i A . LFP and system integrity check
during stimulation parameter adjustments y grity

Clinical value

BrainSense™ Timeline BrainSense™ Events

Display events and chronically-recorded

) Capture patient-triggered, customizable events stored on device
LFP data in calendar format P P 99

Purpose

(also with OmA)
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Observe what your patient actually

; . - Generate a Timeline diary of events with corresponding LFP data
experiences outside of the clinic

Clinical value
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Right STN streaming @7.81 Hz

Freq (Hz)
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Left STN streaming @13.67 Hz

Freq (Hz)
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Not just beta: tremor recording in Vim

20 Spectrogram LFP left VIM
Coherence left VIM/right arm (stretch right arm task)
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a Buijink et al., 2022
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Streaming during a seizure

€ Left Other v

BrainSense

RESUME STREAMING ~ ©90124/000130

NO ALERTS PATIENT LIMITS 9O0ps
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When and why

LFP of interest, 56Hz window (Set-up)

LFP agnostic, ~0-100Hz window

™

BrainSense™ Streaming

™

BrainSense™ Survey

Purpose Visualize patient LFP signal changes in real-time A utility for identifying the existence of LFP signal on all contact pairs
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During clinic visit

Observe real-time physiologic response

Clinical value - - ; .
during stimulation parameter adjustments

LFP and system integrity check

BrainSense™ Timeline BrainSense™ Events

Display events and chronically-recorded

Purpose LFP data in calendar format

Capture patient-triggered, customizable events stored on device

(also with OmA)
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Observe what your patient actually

; . - Generate a Timeline diary of events with corresponding LFP data
experiences outside of the clinic

Clinical value
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Beta after IeS|onaI effect IS gone
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Timeline

Dec 2021

F.
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Timeline in ET (VIM)

May 2023

Tremor
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LFP in status dystonicus

Left (Serning 1.9522.50M2)

Group B:

Right: C
Left: C
Sensing:~Uand 2

9and 11

& Fasano et al, 2021
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LFP-based programming (epilepsy

Left (Sensing 8.79:2 50Hz2)
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& Fasano et al, 2021
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Timeline in SUDEP

| . LPul Frequency band: 12.15 Hz - 17.15 Hz . . .

S s 57-year-old man with intractable multifocal
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Timeline

@® Both

eﬂ STN

Right STN
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Timeline

Aug 2023 v Marked Event

B Parameter Change

27

Right STN
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When and why

LFP of interest, 5Hz window (Set-up) LFP agnostic, ~0-100Hz window

™ ™

BrainSense™ Streaming BrainSense™ Survey

Purpose Visualize patient LFP signal changes in real-time A utility for identifying the existence of LFP signal on all contact pairs
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During clinic visit

Observe real-time physiologic response

Clinical value - - ; .
during stimulation parameter adjustments

LFP and system integrity check

BrainSense™ Events

BrainSense™ Timeline

Display events and chronically-recorded

Purpose LFP data in calendar format

Capture patient-triggered, customizable events stored on device

(also with OmA)
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Observe what your patient actually
experiences outside of the clinic

Clinical value Generate a Timeline diary of events with corresponding LFP data
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Utility of events recording in epilepsy

Summary

@ Left ANT

By Session Since Last Session &/ CONFIGURE PATIENT EVENTS FILTER

Dec07-Feb01 D SELECT ALL

CLEAR SELECTION

NO ALERTS
NO ALERTS READ ALL EVENTS
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- 222 events in 12 ANT/2 CM DBS

T [ Gamma [30-80 Mz)
[ Beta (1330 )

i, — : - » LFPs present during
7 seizures in all 14
; patients (in 91.2
«g' = ) +3.5% of events)
g ’ : . |* Peaks occurred
i S unilaterally in 74.2+
g J .| 8.1% events
g s . | In generalized
8 . — _ : epilepsy treated

with CM: bilateral in

’ S1 S2 S3 S4 S5 S6 S7 S8 59 S10 s11 $12  s13 S14 6 6 . 7 i4 . 2 %

a Yang et al., 2023
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Clinical, sensing or neuroimaging?

3 mon. post-OF

T2h price

12h price

Day 1
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Doy 3
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SEP in thalamic DBS for pain

* No correlation with atlas-based anatomical position and fiber-
tracking of the medial lemniscus.

e Correlated with the segment of lowest threshold for paraesthesia

. Nowacki et al., 2023
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Integrating sensmg and imaging
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Cortlcal beta with directional DBS

Beta (13-29 Hz) power

R
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T-statistic (p<0.05, cluster-
based permutation testing)
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Gpi DBS in a CP patient

Baseline 1 year after DBS
BFMDRS severity/disability scores: 24.5/8 BFMDRS severity/disability scores: 11.5/5

o
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New signs after 2 years

F 3
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22 patients with <30% improvement at 6 months

GPI DBS failure in ‘isolated’ dystonia

electrode misplacement (n=1,5%)
(n=2,9%)

functional dystonia
i (n=3,14%)

electrode misplacement &
other disease (n=6, 27%)

other disease

electrode misplacement & (n=5, 23%)

other cause (n=2, 9%)

electrode misplacement &
functional dystonia (n=1, 5%)

R Pauls et al., 2017
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FND after DBS

CUNKAL/SCIENTIFIC NOTES

25 - Functional movement disorders arising after
successful deep brain stimulation

o

2.0 1

David P, Breen, MBCHhE, PhD, Mohammad Rohani, MD, Elena Maoro, MD, PhD, Helen 5. Mayberg, MD, Correspondence
Mateusz Zurowskd, MD, MSc, Andres M. Lozano, MD, PhD, and Alfonso Fasano, MD, PhD Or. Breen

dptreeni@gmal.com
Newrology ™ 2018,0:1-2. 304:10.1212/WNL.O00000000005.530

Functional Movement Disorders and Deep
Brain Stimulation

A Review

Prevalence (%)

Alexandra Boogers, MD, PhD, and Alfonso Fasano, MD, PhD, FAAN

Neurology: Climical Practice 2024;00:¢200367. doi: 10.1212 /CP].0000000000200367

Marsili et al. 2023
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Topics

e Conclusions
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Conclusions

* DBS is being increasingly used and technology is
getting complex

* Neurophysiology before DBS is mainly used to rule out
functional cases and/or predict the outcome of surgery

* Neurophysiology during DBS is less utilized (still useful
in research) as direct targeting is getting better

* Neurophysiology after DBS is being used more and has
immediate new applications, e.g. adaptive DBS.
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cDBS vs aDBS (single threshold)

RIGHT SMOOTHED LFP ENVELOPE

LEFT SMOOTHED LFP ENVELOPE

RIGHT PEAK-FILTERED LFP
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Single- vs. Dual-threshold

_Single thresholdmode ~ Dual threshold mode Uppee
‘ Left STN v otive T " . Timeline

BrainSense ® EBoth Nov 2021

Adaptive

»
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ADAPT-PD: motor diaries

Single Threshold Dual Threshold Selected Mode Primary endpoint: On time w/o troublesome

# 7 7 dyskinesia > performance goal of 50%
* = o o
18+ 18- 18- wn O o 920/0 950/0
= = = 5 o100%
3 g 3 o <
g £ £ 23 Jco * *
< 12+ < 12- = 12 v o
2 2 z S <5 o Performance Goal=50%
5 5 & - o 50%
2 E g S =
T = e =
= 6 61 x 61 g 4;0 25%
1 o £
(o) -+
s o 0%
0 r r T T 0 r r £ Single Threshold  Dual Threshold
N=35) (N=40)
Sﬁ %QQ & ‘D'Q 8 “S *statistically significant, P<0.0125

B Asleep Bl "Off'time HM "On"time +TD E "On" time - TD

TD = troublesome dyskinesia, * = P<0.025, ** = P<0.01
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Inverse Single Threshold: db RCT

DBS entrains levodopa-induced gamma oscillations

(1) Slower movement
reflected in change
ﬂ in neural biomarker

Neural
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N -—2) drops below
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The issue of nocturnal blomarkers
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LFPs and machine learning (ML) to
predict sleeg

Performance Metrics

Input Features Output
Precision Recall Fl-score Accuracy
0.89 0.88
a+p
0.84 0.84 0.85 Wake
a — b4leslyof T+
Classifier Sleep
B 0.86 0.86 0.86
0.93 0.93 0.9
0.85 0.86 0.85
& Balachandar et al., 2024
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